DESCRIPCIÓN DEL PROYECTO


En la actualidad, aunque el avance del IOT está permitiendo disponer de cada vez más datos y la inteligencia artificial permita extraer cierto valor de dichos datos, sigue existiendo una importante laguna en la toma de decisiones automática y esto se debe a que los algoritmos de optimización, que son los auténticos motores de los sistemas de decisión, son lentos y complejos de realizar. Por tanto, para conseguir las mejoras en la sociedad que las tecnologías ligadas a la Industria 4.0 y a las Smart Cities prometen, es necesario un importante avance en los actuales sistemas de toma de decisiones y en los algoritmos que los impulsan.

Gran parte de las decisiones a afrontar por la Industria 4.0 y las Smart Cities están ligadas a “problemas de planificación” (ej. planificación tráfico, planificación operaciones en talleres, planificación de transporte, planificación personal en hospitales, planificación de puertos, planificación de entregas de paquetería, …). Los algoritmos de optimización para resolver problemas de planificación, en el actual estado del arte, están en gran medida basados en algoritmos de búsqueda local, que requieren ir probando distintas soluciones hasta conseguir la óptima (o una cercana a la óptima), esto los hace lentos y difíciles de implementar ya que hay que construirlos ad-hoc para cada problema.

OBJETIVOS


Recientemente el mundo de la inteligencia artificial se ha visto sacudido por un importante avance en la resolución de problemas de decisión. Este avance ha venido de la mano del Deep Reinforcement Learning (DRL), tecnología que está detrás de la victoria de Google AlphaGo en el juego del Go y otros avances muy relevantes en problemas que requieren tomas de decisiones automáticas. Frente a los algoritmos tradicionales el Deep Reinforcement Learning (DRL) introduce un nuevo paradigma, basado en que es posible aprender a decidir y este aprendizaje, que se puede realizar off-line y mediante simulación, permite ser aplicado con éxito a problemas reales, consiguiéndose con ello reducir el tiempo necesario para la resolución del problema y simplificando extraordinariamente la generación de nuevos algoritmos para problemas de decisión.

El objetivo de este proyecto es desarrollar nuevos Algoritmos de Optimización basados en Deep Reinforcement Learning (DRL), para dos problemas específicos (Vehicle Routing Problem y Scheduling) dónde todavía no hay experiencias relevantes (TRL 3), testear estos algoritmos con datos relevantes e incorporarlos en un prototipo que permita a un usuario interactuar de forma controlada con los resultados (TRL 6) y en el futuro, una vez finalizado el proyecto, el objetivo es comercializarlos en modo SaaS a nivel global.

Proyecto TSI-100909-2019-7 financiado por

DONDE ESTAMOS


  • Oficina de Madrid

    Paseo de la Castellana, 120
    Planta 8ª 28046.
    Madrid, Spain

  • Oficina de Andalucía

    Parque Tecnológico CEEI,
    Calle Manantial, 13. 11500
    El Pto. Sta. Mª, Cádiz, Spain
    Tel. +34 95 654 9332